Let S be the While-program given by

$$S \equiv (\text{ while } \neg(x = y) \text{ do } (x := x + 1; y := y - 1)); \ z := x$$

and let s be a state with sx = 0 and sy = 4. Compute the state s' with $(S, s) \to s'$ according to natural semantics.

We prove that $(S, s) \to s'$ with s'x = 2, s'y = 2 and s'z = 2. We use an abbreviation s_{ijk} to indicate a state with s_{ijk} x = i, s_{ijk} y = j, s_{ijk} z = k and s_{ijk} v = sv $\forall v \notin \{x, y, z\}$. We further use the following names to refer to parts of the program S:

$$S \equiv P_1; \ P_2$$
 $b \equiv \neg(x = y)$ $P_1 \equiv \text{while } b \text{ do } S_1$ $S_1 \equiv S_2; \ S_3$ $P_2 \equiv z := x$ $S_2 \equiv x := x + 1$ $S_3 \equiv y := y - 1$

Proof (using the inference rules of natural semantics):

$$[comp] = \frac{[ass] \quad [ass]}{\langle S_{2}, s_{04_} \rangle \rightarrow s_{14_} \quad \langle S_{3}, s_{14_} \rangle \rightarrow s_{13_}} = \frac{[ass] \quad [ass]}{[comp]} \frac{\langle S_{2}, s_{13_} \rangle \rightarrow s_{23_} \quad \langle S_{3}, s_{23_} \rangle \rightarrow s_{22_}}{[while^{tt}]} \frac{\langle S_{1}, s_{13_} \rangle \rightarrow s_{22_}}{\langle P_{1}, s_{13_} \rangle \rightarrow s_{22_}} = \frac{[while^{ff}]}{\langle P_{1}, s_{22_} \rangle \rightarrow s_{22_}} = \frac{[ass]}{\langle P_{1}, s_{22_} \rangle \rightarrow s_{22_}} = \frac{[ass]}{\langle P_{1}, s_{24_} \rangle \rightarrow s_{222_}} = \frac{\langle P_{1}, P_{2}, s_{04_} \rangle \rightarrow s_{222_}}{\langle S, s_{04_} \rangle \rightarrow s_{222_}} = \frac{\langle P_{1}, P_{2}, s_{04_} \rangle \rightarrow s_{222_}}{\langle S, s_{04_} \rangle \rightarrow s_{222_}} = \frac{\langle P_{1}, P_{2}, P_{2$$